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※ Basics of Set Theory

1.1 Elementary Sets Operations

Definition 1.1. A Set is a well defined collection of items, things, objects, etc,

and it is denoted by,

S = {si},

where the si are called the elements of S

Example 1.2. Following are the examples of sets.

1. N := {0, 1, 2, ...} (Natural Numbers)

2. N+ := {1, 2, 3, ...} (Positive Natural Numbers)

3. Z := {0,±1,±2, ...} (Integers)

4. Q :=
{a

b

∣∣∣ a, b in Z; b ̸= 0
}

(Rational Numbers)

5. R− Completion of Q with respect to metric |x− y| (Real Numbers)

Similarly for Nd,Zd,Qd,Rd as d-dimensional extensions.

Definition 1.3. Let f : dom(f) = X → range(f) ⊆ Y be a function. The for all

A ⊆ dom(f), we denote

f(A) := {f(x)|x ∈ A},

which is called as image of A under f. For all B ⊆ range(f), we denote

f−1(B) := {x ∈ dom(f)|f(x) ∈ B}

which is called as inverse image of B under f (or simply pre-image of B under

f).

The function f is said to be onto or surjective if and only if f(X) = Y.

The function f is said to be one-to-one or injective if and only if for all x1, x2 ∈
dom(f), we have f(x1) = f(x2) → x1 = x2.

Example 1.4. Any sequence (xn)n∈N where xn ∈ X may be viewed as a function

f := N → X via n ∈ N → f(n) = xn.
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Definition 1.5. A set S is said to be Countable if and only if there exists a

surjective mapping f := N → S. Otherwise, S is said to be Uncountable.

If the cardinality given as #(S) of such a countable set S is infinite, we say that S

is Countably Infinite.

If the cardinality #(S) < +∞ of the set S is infinite, then S is Countably finite.

We denote it by,

P(s) := {X|X ⊆ S}

P(s) := (2S)

and it is called as a Power-set of S.

Proposition 1.6. A Set S is countably infinite if and only if there exists a bijection

f : N → S.

Proof. =⇒
By Definition, we know that an Infinite set S is countably infinite if there is a

bijection from the set of Natural numbers onto the set S.

⇐=

If set S has a bijection on the set of natural numbers N then by the definition of

the cardinality, we have that |N| = |S|. Thus S is countably infinite.

Example 1.7. The sets N,Z,Q are countably infinite

f : N → Z via n → f(n) =


n

2
, n is even

−n+ 1

2
, n is odd

However, Rd, 2d, [0, 1], [a, b] are countable.

Claim. 2N is not countable

Proof. Suppose we assume the contrary. Let 2N be countable set.

Using the definition of the countable set, we know that there is a surjection of the

set 2N to the set of Natural numbers.

Then we have a mapping of a function f as,

f : N → 2N

We define A := {n ∈ N|n ̸= f(n)}
We must recall that f is one-to-one, that is there exists some m ∈ N such that f(m)

= A.
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However, by the definition of A we have, m ̸= f(m). Here we have a contradiction.

Thus, our assumption was incorrect.

We conclude that 2N is not countable.

Claim. [0, 1] is uncountable.

Proof. We will prove this by the method of contradiction.

Suppose the set [0, 1] is countable. Then by definition, we can enumerate all the

members of the set [0, 1] with natural numbers.

So,

[0, 1] = x1, x2, x3, ...,∀x ∈ [0, 1]

[0, 1] has a decimal representation given as,

x = 0.b1b2b3b4.........

Suppose there is an enumeration of all numbers, x1, x2, x3, ..... in [0,1]

x1 = 0.b11b12b13...................b1n....

x2 = 0.b21b22b23...................b2n....

x3 = 0.b31b32b33...................b3n....

.

.

.

xn = 0.bn1bn2bn3...................bnn....

We can now construct a real number in [0, 1], which is not listed with the set of

Natural numbers.

Let y = 0.y1y2y3...................yn...., such that we have,

y1 ̸= b11

y2 ̸= b22

y3 ̸= b33

y4 ̸= b44

.

.

.
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yn ̸= bnn

Here y is not equal to any of the number with two decimal representation, since

yn ̸= 0, 9. Thus y and xn differ in the nth place, so yn ̸= xn for any n ∈ N.
Therefore, y is not included in the enumeration of [0,1] which is a contradiction to

our statement. Hence, [0, 1] is uncountable.

Definition 1.8. Let A, B be sets. Then.

1. A
def
= B iff A ⊆ B and B ⊆ A, ⇐⇒ (∀x ∈ A, =⇒ x ∈ B and ∀x ∈ B =⇒

x ∈ A)

2. ∅ := {} empty or void set which contains no element.

3. A ⊊ B iff A ⊆ B and A ̸= B.

Definition 1.9. Let A, B ⊆ X be sets.

The Union of A with B is given by,

A ∪B := {x ∈ X|x ∈ A or x ∈ B}

The Intersection of A and B is given by,

A ∩B := {x ∈ X|x ∈ A and x ∈ B}

The Difference of A and B is given by,

A\B := {x ∈ X|x ∈ A and x ̸= B}

The Symmetric-Difference of A and B is defined as,

A△B := (A ∪B)\(A ∩B)

Two sets A and B are said to be Disjoint if and only if,

A ∩B = ∅

Proposition 1.10. Distributive Laws

(i)(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

(ii)(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)

(iii)(A ∪B)\C = (A\C) ∪ (B\C)

(iv)(A ∩B)\C = (A\C) ∩ (B\C)
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Proof. (i) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

We will prove the above by the method of LHS contained in RHS and RHS con-

tained in LHS.

First we will prove that, (A ∪B) ∩ C ⊆ (A ∩ C) ∪ (B ∩ C) (1)

Let x ∈ A ∩ (B ∪ C), then,

x ∈ A ∩ (B ∪ C) =⇒ x ∈ A and (x ∈ B or x ∈ C)( Def. of Uni and Intersect)

=⇒ (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)(Dist. law of logic)

=⇒ (x ∈ A ∩B) or (x ∈ A ∩ C)( Def of intersection)

=⇒ x ∈ (A ∩B) ∪ (A ∩ C)( Def of Unions.)

Now we will prove the other way. (A ∩ C) ∪ (B ∩ C) ⊆ (A ∪B) ∩ C (2)

Let x ∈ (A ∩ C) ∪ (B ∩ C), then,

x ∈ (A ∩ C) ∪ (B ∩ C) =⇒ (x ∈ A ∩B) or (x ∈ A ∩ C)(Def. of Uni and Inter)

=⇒ (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)(Dist. law)

=⇒ x ∈ A and (x ∈ B or x ∈ C)( Def of Union)

=⇒ x ∈ A ∩ (B ∪ C)( Def of Intersect.)

From (1)and (2), we have that, (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

Similarly one can show the problem (ii) as well.

Proof. (iii) We need to prove that A\(B ∪ C) = (A\B) ∩ (A\C)

A\B ∪ C = A\(B ∪ C)

= A ∩ (B ∪ C)c

= A ∩ (Bc ∩ Cc)

= (A ∩Bc) ∩ (A ∩ Cc)

= (A\B) ∩ (A\C)

Similarly one can prove (iv) as well.

Definition 1.11. Let A ⊆ X be a set. The complement of A, denoted as Ac or

(Ā), is defined to be the set

Ac := X\A; (= {x ∈ X : x /∈ A})

Proposition 1.12. ∀ sets A, B ⊆ X,

(Ac)c = A,A ∩ Ac = ∅, A ∪ Ac = X,
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A\B = A ∩Bc, A ⊆ B ⇐⇒ Bc ⊆ Ac

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

Proof. (i) To prove that (Ac)c, we need to verify the two containments, (Ac)c ⊆ A

and A ⊆ (Ac)c.

We will begin by showing that (Ac)c ⊆ A. Suppose that x ∈ (Ac)c. By the defini-

tion of complement, this means that x ̸= (Ac).

But this says precisely, that x is not in Ac, which by the definition of the comple-

ment again, means exactly that x is in A. In other words, x ∈ A.

To show that A ⊆ (Ac)c. Assume that x ∈ A.

By the definition of complement, this means that x is not in (Ac). In other words,

x ∈ Ac so that x ∈ (Ac)c.

Proof. (ii) Use the definition of Difference to show A\B = A ∩Bc.

Proof. (iii) and (iv) The main idea of these proofs is that negation changes ”and”

into ”or” and vice-versa. Therefore, we only prove the first law and second one

follows the same.

=⇒ Suppose x ∈ (A ∩ B)c. This means x /∈ (A ∩ B). Notice that the negation

of ”x ∈ A and x ∈ B” is equivalent to ”x /∈ A or x /∈ B”. This implies that

x ∈ Ac or x ∈ Bc. In other words, x ∈ Ac ∪Bc.

⇐= Suppose x ∈ Ac∪Bc. This means x /∈ A or x /∈ B. This is logically equivalent to

the negation of ”x ∈ A and x ∈ B”. In other words, it is equivalent to the negation

of x ∈ A ∩B. We may conclude that x /∈ (A ∩B) that is, x ∈ (A ∩B)c.

1.2 Indicator Functions, Set Limits, Convergence of Sets and Mono-

tonicity

Definition 1.13. Let A, X be sets with A ⊆ X. The function x ∈ X → IA : X →
{0, 1} defined by,

IA(x) =

1 : x ∈ A

0 : x /∈ A

is said to be the Indicator function of A or Characteristic function of A

(relative to X).

Lemma 1.14. Let A, B ⊆ X, Then,

1. A ⊆ B ⇐⇒ IA ≤ IB
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Proof. For A, B ∈ X, A ⊆ B ⇐⇒ IA = IB

B can be written as, B = (A ∩B) ∪ (Ac ∩B)

So, if x ∈ A ∩B, IA = IB = 1

If x ∈ Ac ∩B, IA = 0 < 1 = IB Hence, IA ≤ IB whenever, A ⊆ B.

2. IA∩B = IA · IB

Proof. For A, B ∈ X, we need to show that IA∩B = IA · IB

IA∩B = 1 ⇐⇒ x ∈ A ∩B

⇐⇒ x ∈ A and x ∈ B

⇐⇒ IA · IB = 1.

Similarly, we can also show for the value 0.

IA∩B = 0 ⇐⇒ x ∈ A ∩B

⇐⇒ x ∈ A and x ∈ B

⇐⇒ IA · IB = 0.

Thus, IA∩B = IA · IB

3. IA∪B = IA + IB − IA∩B

Proof. For any A, B ∈ X, We need to show that IA∪B = IA + IB − IA · IB
Note that A∪B = (A∪(Ac∩B)) and we can also write, B = (A∩B)∪(Ac∩B).

IB(x) = IA∩B(x) + IAc∩B(x)

IAc∩B(x) = IB(x)− IA∩B(x)

Now since A ∪ (Ac ∩B) = ∅, we have from the above equation,

IA∪B(x) = IA∪(Ac∩B)(x) = IA(x) + IAc∩B(x)

= IA(x) + IB(x)− IA∩B(x)

4. IAc = 1− IA = IX − IA

Proof. For any A, ∈ X, we know that IAc = 1− IA

Then, if x ∈ Ac, IAc = 1 = 1− 0 = 1− IA (Since IA = 1)

If x /∈ Ac, which implies that x ∈ A, IAc = 0 = 1− 1 = 1− IA
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5. IA\B = IA(1− IB)

Proof. The set difference is given by, A\B = A ∩Bc

IA\B = IA∩Bc

= IA · IBc

= IA · (1− IB)

= IA(1− IB

6. IA△B = |IA − IB|

Proof. The symmetric difference is given as, A△B = (A\B) ∪ (B\A)

IA△B = I((A\B)∪(B\A))

= IA\B + IB\A

≤ |IA\B|+ |IB\A|
= |IA\B − IB\A|
= |IA\B + IA∩B − IA∩B + IB\A|
= |IA − IB|

Definition 1.15. Let (An)n∈N be a sequence of sets An ⊆ X, Then,

limsup
n→+∞

An =
∞
∩

n=1

∞
∪

k=n
Ak (Limes Superior),

and

liminf
n→+∞

An =
∞
∪

n=1

∞
∩

k=n
Ak (Limes Inferior),

A sequence (An)n≥1 is convergent ⇐⇒ limsup
n→+∞

An = liminf
n→+∞

An

(An)n≥1 is increasing iff ∀n ∈ N, An ⊆ An+1.

Similarly, Decreasing, Strictly Increasing, and Strictly Decreasing are

defined as expected.

(An)n≥1 is Monotone iff it is increasing or decreasing.

Remark 1.16. Trivially always,

liminf
n→+∞

An ⊆ limsup
n→+∞

An
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Theorem 1.17. Every monotone sequence (An)n≥1 with An ⊆ X converges.

Moreover, we have,

lim
n→+∞

An =
∞
∪

n=1
An

if (An) is increasing and,

lim
n→+∞

An =
∞
∩

n=1
An

if (An) is decreasing.

Proof. Suppose (An)n≥1 is increasing. Then,

liminf
n→+∞

An =
∞
∪

n=1

∞
∩

k=n
Ak =

∞
∪

n=1
An ⊇ limsup

n→+∞
An ⊇ liminf

n→+∞
An

=⇒ liminf
n→+∞

An = limsup
n→+∞

An

Suppose (An)n≥1 is decreasing. Then,

liminf
n→+∞

An =
∞
∪

n=1

∞
∩

k=n
Ak =

∞
∪

n=1

∞
∩
k=1

Ak =
∞
∩
k=1

Ak =
∞
∩

n=1
An =

∞
∩

n=1

∞
∪

k=n
Ak = limsup

n→+∞
An

Remark 1.18. Note that,

∞
∩

n=1

∞
∪

k=n
Ak = liminf

n→+∞
An = {x ∈ X|x ∈ An, for infinitely many n ∈ N},

hence,

limsup
n→+∞

An{x ∈ X|∃n0 ∈ N : ∀n ≥ n0(x), x ∈ An}

For (An)n≥1 increasing,

An ↑ A∞.

For (An)n≥1 decreasing,

An ↓ A∞.

Similarly, fn ↑ f∞ and fn ↓ f∞

For the real valued sequences, (an)n∈N, we have,

liminf
n→+∞

an = liminf
n→+∞

{ak : k ≥ n} = supinf
k

{an : n ≥ k},

limsup
n→+∞

an = limsup
n→+∞

{ak : k ≥ n} = infsup
k

{an : n ≥ k}

Lemma 1.19. ∀An, Bn, C ⊆ X

1. (lim sup n→+∞An)
c = lim inf n→+∞Ac

n
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Proof.

(lim sup n→+∞An)
c = (

∞
∩

n=1

∞
∪

k=n
Ak)

c

=
∞
∪

n=1
(

∞
∪

k=n
Ak)

c

=
∞
∪

n=1

∞
∩

k=n
Ac

k

= lim inf
n→+∞

Ac
k

2. I lim inf n→+∞An = lim inf n→+∞IAn

I lim sup n→+∞An = lim sup n→+∞IAn

Proof.

3. An → C ⇐⇒ IAn → IC

Proof.

4. lim inf n→+∞An ∪ lim sup n→+∞Bn ⊆ lim sup n→+∞(An ∪Bn)

Proof.

5. lim sup n→+∞An\lim inf n→+∞An = lim sup n→+∞(An△An+1)

Proof.

6. ∃△∞
n=1An = A1△A2△... ⇐⇒ limn→+∞An = ∅

Proof.

Remark 1.20. (P(X),△) forms an Abelian group (i.e. commutative and asso-

ciative w.r.t △ operations).
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1.3 Family of Sets

Definition 1.21. A family of sets is a non empty set F whose elements are sets

by themselves, denoted by

F = {Ai|i ∈ I}or{Ai}i∈I ,

where I is called the Index set or i Indices

Remark 1.22. Set operation are usually defined on F, for example, Unions

∪
i∈I

Ai = {x ∈ X|∃i ∈ I such that x ∈ X}

and Intersections,

∩
i∈I

Ai = {x ∈ X|∀i ∈ I such that x ∈ X}

Theorem 1.23. Let Ai and B be the subsets of X. Then,

1. ( ∪
i∈I

Ai) ∩B = ∪
i∈I

(Ai ∩B)

Proof. Let x ∈ ∪
i∈I

Ai and x ∈ B, then,

x ∈ ( ∪
i∈I

Ai) ∩B ⇐⇒ x ∈ Ai,∀i ∈ I and x ∈ B

This implies that,

x ∈ ∪
i∈I

(Ai ∩B)

Conversely, if

x ∈ (
i∈I

∪)(Ai ∩B) ⇐⇒ x ∈ Ai ∩B, ∀i ∈ I

This implies that

x ∈ Ai and x ∈ B

then we have,

x ∈ ( ∪
i∈I

Ai) ∩B

Hence, we proved that

( ∪
i∈I

Ai) ∩B = ∪
i∈I

(Ai ∩B)

2. ( ∩
i∈I

Ai) ∪B = ∩
i∈I

(Ai ∪B) (Distributive Laws)
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Proof. If x ∈ B ∪ ( ∩
i∈I

Ai), then x ∈ B or x ∈ ∩
i∈I

Ai.

This implies that x ∈ Ai∀i ∈ I

Thus, x ∈ B ∪ Ai, ∀i ∈ I

3. ( ∪
i∈I

Ai)
c = ∩

i∈I
Ac

i (De Morgan’s Laws)

Proof.

4. ( ∩
i∈I

Ai)
c = ∪

i∈I
Ac

i (De Morgan’s Laws)

Proof.

Definition 1.24. Let f : X → Y be one-to-one and onto. Then f−1 : Y → X

defined by

f−1(y) = x ⇐⇒ f(x) = y

is called the inverse of f. Given two functions f : X → Y and g : Y → Z. Then

x 7→ (g ◦ f)(x) = g(f(x)) is called the composition g ◦ f : X → Z.

Theorem 1.25. On relationship between Images and Inverse Images.

Assume (ai)i∈I is a family of subsets of X, (Bi)i∈I is a family of subsets of Y.

Function f : X → Y, Then we have the following

1.4 Cartesian Product, Relation and Ordered Sets
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