Math 501: Measure Theory Notes

Based on class notes of Dr. Henri Schurz, SIU, Carbondale, IL

Suraj Powar

Last updated: November 15, 2024

Contents

Chapte	er 1: Basics of Set Theory	2
1.1	Elementary Sets Operations	2
1.2	Indicator Functions, Set Limits, Convergence of Sets and Monotonicity	7
1.3	Family of Sets	12
1.4	Cartesian Product, Relation and Ordered Sets	13
1.5	Uncountable, Countable Sets, Cardinality as Subadditive Measure .	13
1.6	Semiring, Ring, Algebra, σ -Algebra, and Borel Sets	13
1.7	Dynkin Systems and Minimal-Generated Systems	13
Chapte	er 2: Basics Concepts of Metric Spaces	13
2.1	Basic concepts of Metric Spaces	13

***** Basics of Set Theory

1.1 Elementary Sets Operations

Definition 1.1. A **Set** is a well defined collection of items, things, objects, etc, and it is denoted by,

$$S = \{s_i\},\$$

where the s_i are called the elements of S

Example 1.2. Following are the examples of sets.

- 1. $\mathbb{N} := \{0, 1, 2, ...\}$ (Natural Numbers)

 2. $\mathbb{N}_+ := \{1, 2, 3, ...\}$ (Positive Natural Numbers)

 3. $\mathbb{Z} := \{0, \pm 1, \pm 2, ...\}$ (Integers)
- 4. $\mathbb{Q} := \left\{ \frac{a}{b} \middle| a, b \text{ in } \mathbb{Z}; b \neq 0 \right\}$ (Rational Numbers)
- 5. \mathbb{R} Completion of \mathbb{Q} with respect to metric |x y| (Real Numbers)

Similarly for $\mathbb{N}^d, \mathbb{Z}^d, \mathbb{Q}^d, \mathbb{R}^d$ as d-dimensional extensions.

Definition 1.3. Let $f : dom(f) = X \rightarrow range(f) \subseteq Y$ be a function. The for all $A \subseteq dom(f)$, we denote

$$f(A) := \{f(x) | x \in A\},\$$

which is called as **image** of A under f. For all $B \subseteq range(f)$, we denote

$$f^{-1}(B) := \{ x \in dom(f) | f(x) \in B \}$$

which is called as **inverse image** of B under f (or simply **pre-image** of B under f).

The function f is said to be **onto** or **surjective** if and only if f(X) = Y.

The function f is said to be **one-to-one** or **injective** if and only if for all $x_1, x_2 \in dom(f)$, we have $f(x_1) = f(x_2) \rightarrow x_1 = x_2$.

Example 1.4. Any sequence $(x_n)_{n \in \mathbb{N}}$ where $x_n \in X$ may be viewed as a function

$$f := \mathbb{N} \to X$$
 via $\mathbf{n} \in \mathbb{N} \to f(n) = x_n$.

Contents

Definition 1.5. A set S is said to be **Countable** if and only if there exists a surjective mapping $f := \mathbb{N} \to S$. Otherwise, S is said to be **Uncountable**.

If the cardinality given as #(S) of such a countable set S is infinite, we say that S is **Countably Infinite**.

If the cardinality $\#(S) < +\infty$ of the set S is infinite, then S is **Countably finite**. We denote it by,

$$\mathscr{P}(s) := \{X | X \subseteq S\}$$
$$\mathscr{P}(s) := (2^S)$$

and it is called as a **Power-set** of S.

Proposition 1.6. A Set S is countably infinite if and only if there exists a bijection $f : \mathbb{N} \to S$.

 $Proof. \implies$

By Definition, we know that an Infinite set S is countably infinite if there is a bijection from the set of Natural numbers onto the set S.

 \Leftarrow

If set S has a bijection on the set of natural numbers \mathbb{N} then by the definition of the cardinality, we have that $|\mathbb{N}| = |S|$. Thus S is countably infinite. \Box

Example 1.7. The sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countably infinite

$$f: \mathbb{N} \to \mathbb{Z}$$
 via $n \to f(n) = \begin{cases} \frac{n}{2}, & \text{n is even} \\ -\frac{n+1}{2}, & \text{n is odd} \end{cases}$

However, \mathbb{R}^d , 2^d , [0, 1], [a, b] are countable.

Claim. $2^{\mathbb{N}}$ is not countable

Proof. Suppose we assume the contrary. Let $2^{\mathbb{N}}$ be countable set.

Using the definition of the countable set, we know that there is a surjection of the set $2^{\mathbb{N}}$ to the set of Natural numbers.

Then we have a mapping of a function f as,

$$f: \mathbb{N} \to 2^{\mathbb{N}}$$

We define $A := \{n \in \mathbb{N} | n \neq f(n)\}$

We must recall that f is one-to-one, that is there exists some $m \in \mathbb{N}$ such that f(m) = A.

Contents

However, by the definition of A we have, $m \neq f(m)$. Here we have a contradiction. Thus, our assumption was incorrect.

We conclude that $2^{\mathbb{N}}$ is not countable.

Claim. [0, 1] is uncountable.

Proof. We will prove this by the method of contradiction. Suppose the set [0, 1] is countable. Then by definition, we can enumerate all the members of the set [0, 1] with natural numbers. So,

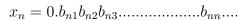
 $[0,1] = x_1, x_2, x_3, \dots, \forall x \in [0,1]$

[0, 1] has a decimal representation given as,

 $x = 0.b_1b_2b_3b_4....$

Suppose there is an enumeration of all numbers, x_1, x_2, x_3, \dots in [0,1]

$x_1 = 0.b_{11}b_{12}b_{13}\dots\dots$	b_{1n}
$x_2 = 0.b_{21}b_{22}b_{23}\dots\dots$	b_{2n}
$x_3 = 0.b_{31}b_{32}b_{33}\dots\dots$	b_{3n}



We can now construct a real number in [0, 1], which is not listed with the set of Natural numbers.

Let $y = 0.y_1y_2y_3...,y_n...,$ such that we have,

$$y_1 \neq b_{11}$$
$$y_2 \neq b_{22}$$
$$y_3 \neq b_{33}$$
$$y_4 \neq b_{44}$$
$$\cdot$$

.

 $y_n \neq b_{nn}$

Here y is not equal to any of the number with two decimal representation, since $y_n \neq 0, 9$. Thus y and x_n differ in the n^{th} place, so $y_n \neq x_n$ for any $n \in \mathbb{N}$. Therefore, y is not included in the enumeration of [0,1] which is a contradiction to our statement. Hence, [0, 1] is uncountable.

Definition 1.8. Let A, B be sets. Then.

- 1. A $\stackrel{def}{=}$ B iff A \subseteq B and B \subseteq A, \iff ($\forall x \in A, \implies x \in B$ and $\forall x \in B \implies x \in A$)
- 2. $\emptyset := \{\}$ empty or void set which contains no element.
- 3. A \subseteq B iff $A \subseteq$ B and $A \neq B$.

Definition 1.9. Let A, $B \subseteq X$ be sets. The **Union** of A with B is given by,

$$A \cup B := \{x \in X | x \in A \text{ or } x \in B\}$$

The Intersection of A and B is given by,

 $A \cap B := \{ x \in X | x \in A \text{ and } x \in B \}$

The **Difference** of A and B is given by,

 $A \backslash B := \{ x \in X | x \in A \text{ and } x \neq B \}$

The **Symmetric-Difference** of A and B is defined as,

$$A \triangle B := (A \cup B) \backslash (A \cap B)$$

Two sets A and B are said to be **Disjoint** if and only if,

$$A \cap B = \emptyset$$

Proposition 1.10. Distributive Laws

$$(i)(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
$$(ii)(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$
$$(iii)(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$$
$$(iv)(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$$

Contents

Proof. (i) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

We will prove the above by the method of LHS contained in RHS and RHS contained in LHS.

First we will prove that, $(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$ (1) Let $\mathbf{x} \in A \cap (B \cup C)$, then,

$$x \in A \cap (B \cup C) \Longrightarrow x \in A \text{ and } (x \in B \text{ or } x \in C)(\text{ Def. of Uni and Intersect})$$
$$\implies (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)(\text{Dist. law of logic})$$
$$\implies (x \in A \cap B) \text{ or } (x \in A \cap C)(\text{ Def of intersection})$$
$$\implies x \in (A \cap B) \cup (A \cap C)(\text{ Def of Unions.})$$

Now we will prove the other way. $(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$ (2) Let $\mathbf{x} \in (A \cap C) \cup (B \cap C)$, then,

$$x \in (A \cap C) \cup (B \cap C) \Longrightarrow (x \in A \cap B) \text{ or } (x \in A \cap C)(\text{Def. of Uni and Inter})$$
$$\Longrightarrow (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)(\text{Dist. law})$$
$$\Longrightarrow x \in A \text{ and } (x \in B \text{ or } x \in C)(\text{ Def of Union})$$
$$\Longrightarrow x \in A \cap (B \cup C)(\text{ Def of Intersect.})$$

From (1)and (2), we have that, $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ Similarly one can show the problem (ii) as well.

Proof. (iii) We need to prove that $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$

$$A \setminus B \cup C = A \setminus (B \cup C)$$

= $A \cap (B \cup C)^c$
= $A \cap (B^c \cap C^c)$
= $(A \cap B^c) \cap (A \cap C^c)$
= $(A \setminus B) \cap (A \setminus C)$

Similarly one can prove (iv) as well.

Definition 1.11. Let $A \subseteq X$ be a set. The **complement** of A, denoted as A^c or (\overline{A}) , is defined to be the set

$$A^c := X \setminus A; \quad (= \{x \in X : x \notin A\})$$

Proposition 1.12. \forall sets A, B \subseteq X,

$$(A^c)^c = A, A \cap A^c = \emptyset, A \cup A^c = X,$$

Contents 1.2 Indicator Functions, Set Limits, Convergence of Sets and Monotonicity

$$A \setminus B = A \cap B^c, A \subseteq B \iff B^c \subseteq A^c$$
$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

Proof. (i) To prove that $(A^c)^c$, we need to verify the two containments, $(A^c)^c \subseteq A$ and $A \subseteq (A^c)^c$.

We will begin by showing that $(A^c)^c \subseteq A$. Suppose that $x \in (A^c)^c$. By the definition of complement, this means that $x \neq (A^c)$.

But this says precisely, that x is not in A^c , which by the definition of the complement again, means exactly that x is in A. In other words, $x \in A$.

To show that $A \subseteq (A^c)^c$. Assume that $x \in A$.

By the definition of complement, this means that x is not in (A^c) . In other words, $x \in A^c$ so that $x \in (A^c)^c$.

Proof. (ii) Use the definition of Difference to show $A \setminus B = A \cap B^c$.

Proof. (iii) and (iv) The main idea of these proofs is that negation changes "and" into "or" and vice-versa. Therefore, we only prove the first law and second one follows the same.

 \implies Suppose $\mathbf{x} \in (A \cap B)^c$. This means $x \notin (A \cap B)$. Notice that the negation of " $x \in A$ and $x \in B$ " is equivalent to " $x \notin A$ or $x \notin B$ ". This implies that $x \in A^c$ or $x \in B^c$. In other words, $x \in A^c \cup B^c$.

 \Leftarrow Suppose $\mathbf{x} \in A^c \cup B^c$. This means $x \notin A$ or $x \notin B$. This is logically equivalent to the negation of " $\mathbf{x} \in A$ and $\mathbf{x} \in B$ ". In other words, it is equivalent to the negation of $\mathbf{x} \in A \cap B$. We may conclude that $x \notin (A \cap B)$ that is, $x \in (A \cap B)^c$. \Box

1.2 Indicator Functions, Set Limits, Convergence of Sets and Monotonicity

Definition 1.13. Let A, X be sets with $A \subseteq X$. The function $x \in X \to \mathbb{I}_A : X \to \{0, 1\}$ defined by,

$$\mathbb{I}_A(x) = \begin{cases} 1 : x \in A \\ 0 : x \notin A \end{cases}$$

is said to be the **Indicator function** of A or **Characteristic function** of A (relative to X).

Lemma 1.14. Let A, $B \subseteq X$, Then,

1. $A \subseteq B \iff \mathbb{I}_A \le \mathbb{I}_B$

Proof. For A,
$$B \in X$$
, $A \subseteq B \iff \mathbb{I}_A = \mathbb{I}_B$
B can be written as, $B = (A \cap B) \cup (A^c \cap B)$
So, if $\mathbf{x} \in A \cap B$, $\mathbb{I}_A = \mathbb{I}_B = 1$
If $\mathbf{x} \in A^c \cap B$, $\mathbb{I}_A = 0 < 1 = \mathbb{I}_B$ Hence, $\mathbb{I}_A \leq \mathbb{I}_B$ whenever, $A \subseteq B$.

2. $\mathbb{I}_{A\cap B} = \mathbb{I}_A \cdot \mathbb{I}_B$

Proof. For A, B $\in X$, we need to show that $\mathbb{I}_{A \cap B} = \mathbb{I}_A \cdot \mathbb{I}_B$

$$\mathbb{I}_{A \cap B} = 1 \iff x \in A \cap B$$
$$\iff x \in A \text{ and } x \in B$$
$$\iff \mathbb{I}_A \cdot \mathbb{I}_B = 1.$$

Similarly, we can also show for the value 0.

$$\mathbb{I}_{A \cap B} = 0 \iff x \in A \cap B$$
$$\iff x \in A \text{ and } x \in B$$
$$\iff \mathbb{I}_A \cdot \mathbb{I}_B = 0.$$

Thus, $\mathbb{I}_{A \cap B} = \mathbb{I}_A \cdot \mathbb{I}_B$

3. $\mathbb{I}_{A\cup B} = \mathbb{I}_A + \mathbb{I}_B - \mathbb{I}_{A\cap B}$

Proof. For any A, B $\in X$, We need to show that $\mathbb{I}_{A \cup B} = \mathbb{I}_A + \mathbb{I}_B - \mathbb{I}_A \cdot \mathbb{I}_B$ Note that $A \cup B = (A \cup (A^c \cap B))$ and we can also write, $B = (A \cap B) \cup (A^c \cap B)$.

$$\mathbb{I}_B(x) = \mathbb{I}_{A \cap B}(x) + \mathbb{I}_{A^c \cap B}(x)$$
$$\mathbb{I}_{A^c \cap B}(x) = \mathbb{I}_B(x) - \mathbb{I}_{A \cap B}(x)$$

Now since $A \cup (A^c \cap B) = \emptyset$, we have from the above equation,

$$\mathbb{I}_{A\cup B}(x) = \mathbb{I}_{A\cup (A^c\cap B)}(x) = \mathbb{I}_A(x) + \mathbb{I}_{A^c\cap B}(x)$$
$$= \mathbb{I}_A(x) + \mathbb{I}_B(x) - \mathbb{I}_{A\cap B}(x)$$

4. $\mathbb{I}_{A^c} = 1 - \mathbb{I}_A = \mathbb{I}_X - \mathbb{I}_A$

Proof. For any
$$A, \in X$$
, we know that $\mathbb{I}_{A^c} = 1 - \mathbb{I}_A$
Then, if $x \in A^c$, $\mathbb{I}_{A^c} = 1 = 1 - 0 = 1 - \mathbb{I}_A$ (Since $\mathbb{I}_A = 1$)
If $x \notin A^c$, which implies that $x \in A$, $\mathbb{I}_{A^c} = 0 = 1 - 1 = 1 - \mathbb{I}_A$

Contents 1.2 Indicator Functions, Set Limits, Convergence of Sets and Monotonicity

5. $\mathbb{I}_{A\setminus B} = \mathbb{I}_A(1 - \mathbb{I}_B)$

Proof. The set difference is given by, $A \setminus B = A \cap B^c$

$$\begin{split} \mathbb{I}_{A \setminus B} &= \mathbb{I}_{A \cap B^c} \\ &= \mathbb{I}_A \cdot \mathbb{I}_{B^c} \\ &= \mathbb{I}_A \cdot (1 - \mathbb{I}_B) \\ &= \mathbb{I}_A (1 - \mathbb{I}_B) \end{split}$$

6. $\mathbb{I}_{A \triangle B} = |\mathbb{I}_A - \mathbb{I}_B|$

Proof. The symmetric difference is given as, $A \triangle B = (A \setminus B) \cup (B \setminus A)$

$$\begin{split} \mathbb{I}_{A \triangle B} &= \mathbb{I}_{((A \setminus B) \cup (B \setminus A))} \\ &= \mathbb{I}_{A \setminus B} + \mathbb{I}_{B \setminus A} \\ &\leq |\mathbb{I}_{A \setminus B}| + |\mathbb{I}_{B \setminus A}| \\ &= |\mathbb{I}_{A \setminus B} - \mathbb{I}_{B \setminus A}| \\ &= |\mathbb{I}_{A \setminus B} + \mathbb{I}_{A \cap B} - \mathbb{I}_{A \cap B} + \mathbb{I}_{B \setminus A}| \\ &= |\mathbb{I}_{A} - \mathbb{I}_{B}| \end{split}$$

Definition 1.15. Let $(A_n)_{n \in \mathbb{N}}$ be a sequence of sets $A_n \subseteq X$, Then,

$$\underset{n \to +\infty}{\text{limsup}} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \text{ (Limes Superior)},$$

and

$$\liminf_{n \to +\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \text{ (Limes Inferior)},$$

A sequence $(A_n)_{n\geq 1}$ is **convergent** $\iff \underset{n\to+\infty}{\limsup} A_n = \underset{n\to+\infty}{\liminf} A_n$ $(A_n)_{n\geq 1}$ is **increasing** iff $\forall n \in \mathbb{N}, A_n \subseteq A_{n+1}$. Similarly, **Decreasing, Strictly Increasing, and Strictly Decreasing** are

defined as expected.

 $(A_n)_{n\geq 1}$ is **Monotone** iff it is increasing or decreasing.

Remark 1.16. Trivially always,

$$\underset{n \to +\infty}{\lim\inf} A_n \subseteq \underset{n \to +\infty}{\limsup} A_n$$

Theorem 1.17. Every monotone sequence $(A_n)_{n\geq 1}$ with $A_n \subseteq X$ converges. Moreover, we have,

$$\lim_{n \to +\infty} A_n = \bigcup_{n=1}^{\infty} A_n$$

if (A_n) is increasing and,

$$\lim_{n \to +\infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

if (A_n) is decreasing.

Proof. Suppose $(A_n)_{n\geq 1}$ is increasing. Then,

$$\liminf_{n \to +\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} A_n \supseteq \limsup_{n \to +\infty} A_n \supseteq \liminf_{n \to +\infty} A_n$$
$$\implies \liminf_{n \to +\infty} A_n = \limsup_{n \to +\infty} A_n$$

Suppose $(A_n)_{n\geq 1}$ is decreasing. Then,

$$\liminf_{n \to +\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} \bigcap_{k=1}^{\infty} A_k = \bigcap_{k=1}^{\infty} A_k = \bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \underset{n \to +\infty}{\text{limsup}} A_n$$

Remark 1.18. Note that,

$$\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\omega} A_k = \liminf_{n \to +\infty} A_n = \{ x \in X | x \in A_n, \text{ for infinitely many n } \in \mathbb{N} \},$$

hence,

$$\limsup_{n \to +\infty} A_n \{ x \in X | \exists n_0 \in \mathbb{N} : \forall n \ge n_0(x), x \in A_n \}$$

For $(A_n)_{n\geq 1}$ increasing,

 $A_n \uparrow A_\infty.$

For $(A_n)_{n\geq 1}$ decreasing,

 $A_n \downarrow A_\infty.$

Similarly, $f_n \uparrow f_\infty$ and $f_n \downarrow f_\infty$ For the real valued sequences, $(a_n)_{n \in \mathbb{N}}$, we have,

$$\liminf_{n \to +\infty} a_n = \liminf_{n \to +\infty} \{a_k : k \ge n\} = \sup_k \{a_n : n \ge k\},$$
$$\limsup_{n \to +\infty} a_n = \limsup_{n \to +\infty} \{a_k : k \ge n\} = \inf_k \{a_n : n \ge k\}$$

Lemma 1.19. $\forall A_n, B_n, C \subseteq X$

1. (lim sup $_{n \to +\infty} A_n)^c = \lim \inf _{n \to +\infty} A_n^c$

Contents 1.2 Indicator Functions, Set Limits, Convergence of Sets and Monotonicity

Proof.

$$(\limsup_{n \to +\infty} A_n)^c = (\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k)^c$$
$$= \bigcup_{n=1}^{\infty} (\bigcup_{k=n}^{\infty} A_k)^c$$
$$= \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^c$$
$$= \liminf_{n \to +\infty} A_k^c$$

- 2. $\mathbb{I}_{\liminf n \to +\infty} A_n = \liminf_{n \to +\infty} \inf_{A_n} \mathbb{I}_{A_n}$ $\mathbb{I}_{\limsup n \to +\infty} A_n = \limsup_{n \to +\infty} \mathbb{I}_{A_n}$ *Proof.* 3. $A_n \to C \iff \mathbb{I}_{A_n} \to \mathbb{I}_C$

Proof.	
1 100	

- 4. lim inf $_{n\to+\infty}A_n \cup \lim \sup_{n\to+\infty}B_n \subseteq \lim \sup_{n\to+\infty}(A_n \cup B_n)$
 - Proof. \Box
- 5. $\limsup_{n \to +\infty} A_n \setminus \liminf_{n \to +\infty} A_n = \limsup_{n \to +\infty} (A_n \triangle A_{n+1})$
 - Proof. \Box
- 6. $\exists \triangle_{n=1}^{\infty} A_n = A_1 \triangle A_2 \triangle \dots \iff \lim_{n \to +\infty} A_n = \emptyset$

Proof.
$$\Box$$

Remark 1.20. $(\mathscr{P}(X), \bigtriangleup)$ forms an Abelian group (i.e. commutative and associative w.r.t \bigtriangleup operations).

1.3 Family of Sets

Definition 1.21. A family of sets is a non empty set F whose elements are sets by themselves, denoted by

$$F = \{A_i | i \in I\} or \{A_i\}_{i \in I}$$

where I is called the Index set or i Indices

Remark 1.22. Set operation are usually defined on F, for example, Unions

$$\bigcup_{i \in I} A_i = \{ x \in X | \exists i \in I \text{ such that } x \in X \}$$

and Intersections,

$$\bigcap_{i \in I} A_i = \{ x \in X | \forall i \in I \text{ such that } x \in X \}$$

Theorem 1.23. Let A_i and B be the subsets of X. Then,

1. $(\bigcup_{i\in I} A_i) \cap B = \bigcup_{i\in I} (A_i \cap B)$

Proof. Let $\mathbf{x} \in \bigcup_{i \in I} A_i$ and $x \in B$, then,

 $x \in (\bigcup_{i \in I} A_i) \cap B \iff x \in A_i, \forall i \in I \text{ and } x \in B$

This implies that,

$$x \in \bigcup_{i \in I} (A_i \cap B)$$

Conversely, if

$$x \in (\bigcup_{i \in I})(A_i \cap B) \iff x \in A_i \cap B, \forall i \in I$$

This implies that

$$x \in A_i \text{ and } x \in B$$

then we have,

$$x \in \left(\bigcup_{i \in I} A_i\right) \cap B$$

Hence, we proved that

$$(\bigcup_{i\in I}A_i)\cap B=\bigcup_{i\in I}(A_i\cap B)$$

2.
$$(\bigcap_{i \in I} A_i) \cup B = \bigcap_{i \in I} (A_i \cup B)$$
 (Distributive Laws)

Contents

Proof. If
$$\mathbf{x} \in B \cup (\bigcap_{i \in I} A_i)$$
, then $x \in B$ or $x \in \bigcap_{i \in I} A_i$.
This implies that $x \in A_i \forall i \in I$
Thus, $x \in B \cup A_i, \forall i \in I$

3.
$$(\bigcup_{i \in I} A_i)^c = \bigcap_{i \in I} A_i^c$$
 (De Morgan's Laws)

Proof.

4. $(\bigcap_{i\in I} A_i)^c = \bigcup_{i\in I} A_i^c$ (De Morgan's Laws)

Proof.

Definition 1.24. Let $f: X \to Y$ be one-to-one and onto. Then $f^{-1}: Y \to X$ defined by

$$f^{-1}(y) = x \iff f(x) = y$$

is called the inverse of f. Given two functions $f: X \to Y$ and $g: Y \to Z$. Then $x \mapsto (g \circ f)(x) = g(f(x))$ is called the composition $g \circ f: X \to Z$.

Theorem 1.25. On relationship between Images and Inverse Images. Assume $(a_i)_{i \in I}$ is a family of subsets of X, $(B_i)_{i \in I}$ is a family of subsets of Y. Function $f: X \to Y$, Then we have the following

1.4 Cartesian Product, Relation and Ordered Sets

- 1.5 Uncountable, Countable Sets, Cardinality as Subadditive Measure
- 1.6 Semiring, Ring, Algebra, σ -Algebra, and Borel Sets
- 1.7 Dynkin Systems and Minimal-Generated Systems
- ***** Metric Spaces
- 2.1 Basic concepts of Metric Spaces

References